# Geometry

## A Molecular Near Miss!

I’m thrilled to report that I’m a co-author of the article “An ultra-stable gold-coordinated protein cage displaying reversible assembly“, which was recently published in Nature. This work is the result of an exciting collaboration between biochemists, physicists, structural biologists, mathematicians, and others (including yours truly, a computer scientist!), spread over …

## Hexagonal Cross Stitch

At least year’s Bridges Conference in Stockholm, I attended a short presentation by Susan Goldstine about “self-diagramming lace”. As motivation for the new work she was presenting, Susan referenced her paper from the year before on what she calls “symmetry samplers”. Samplers are an old tradition in fibre arts. A …

## The Tactile libraries

I developed a new open-source software library for manipulating isohedral tilings, based on the work I did on this topic during my PhD. The library is available in C++ and Javascript, and I offer a few fun automated and interactive demo programs that anybody can use to play with isohedral tilings.

## Heesch Numbers, Part 4: Edge-to-Edge Pentagons

This post is the fourth and final one in a series about Heesch numbers.  Part 1 was a general introduction, and would be a good starting point if you’re unfamiliar with the topic. Part 2 covered exhaustive computations of Heesch numbers of polyominoes and polyiamonds, and likely isn’t needed to …

## Heesch Numbers, Part 3: Bamboo Shoots and Ice Cream Cones

This is the third post in a planned series of four about Heesch numbers. In the first post, I introduced some of the basic ideas behind Heesch numbers; if you’re not familiar with the topic, you may want to read it before coming back here. The second post was about …

## Heesch Numbers, Part 2: Polyforms

In the first post in this series, I introduced the concept of a shape’s Heesch number. In brief, if a shape doesn’t tile the plane, its Heesch number is a measure of the maximum number of times you can surround the shape with layers of copies of itself. (Shapes that do …

## Heesch numbers, Part 1

I love tiling theory. It’s a branch of mathematics that brings together many beautiful ideas, and that offers a lot of open questions for exploration. And of course, it gives us tools to apply mathematics in the world of art and design. Normally, in my research as a computer scientist …

## Interwoven Islamic geometric patterns

Anybody who has attended a Bridges conference in past ten years will be familiar with the work of Rinus Roelofs. His talks always offer an entertaining contrast: stunning and inspiring ideas in the intersection of geometry and art, balanced with his humble, low-key delivery. It was also Rinus who suggested …