Currently browsing category

Geometry

Hexagonal Cross Stitch

At least year’s Bridges Conference in Stockholm, I attended a short presentation by Susan Goldstine about “self-diagramming lace”. As motivation for the new work she was presenting, Susan referenced her paper from the year before on what she calls “symmetry samplers”. Samplers are an old tradition in fibre arts. A …

The Tactile libraries

I developed a new open-source software library for manipulating isohedral tilings, based on the work I did on this topic during my PhD. The library is available in C++ and Javascript, and I offer a few fun automated and interactive demo programs that anybody can use to play with isohedral tilings.

Heesch Numbers, Part 2: Polyforms

In the first post in this series, I introduced the concept of a shape’s Heesch number. In brief, if a shape doesn’t tile the plane, its Heesch number is a measure of the maximum number of times you can surround the shape with layers of copies of itself. (Shapes that do …

Heesch numbers, Part 1

I love tiling theory. It’s a branch of mathematics that brings together many beautiful ideas, and that offers a lot of open questions for exploration. And of course, it gives us tools to apply mathematics in the world of art and design. Normally, in my research as a computer scientist …

Shad Valley 2016

In 1989 I attended Shad Valley, a one-month Canadian summer program for high school students. I spent a month living on the UBC campus. Basically it was Nerd Camp, though perhaps with a more diverse range of interests and talents than you might expect from the nerd stereotype, and with …

Woven book polyhedra

Earlier this year, at a local coffee shop, I noticed a flyer on the wall with a call for artist submissions for an upcoming show in Halton Hills. The topic of the show was Altered Books. I had never experimented with the artform of altered books before, though I had …